Visual Tracking Using Max-Average Pooling and Weight-Selection Strategy
نویسندگان
چکیده
منابع مشابه
Visual Tracking using Kernel Projected Measurement and Log-Polar Transformation
Visual Servoing is generally contained of control and feature tracking. Study of previous methods shows that no attempt has been made to optimize these two parts together. In kernel based visual servoing method, the main objective is to combine and optimize these two parts together and to make an entire control loop. This main target is accomplished by using Lyapanov theory. A Lyapanov candidat...
متن کاملRobust visual tracking using feature selection
Visual tracking has become a very important component in computer vision, but achieving a robust, reliable and real time tracking remains a real challenge. In order to improve the actual state-of-the-art, we choose to study and improve one of the most performing adaptive tracker by detection. We selected Struck [27] for this quality performance and his low computational cost that makes it real ...
متن کاملFractional Max-Pooling
Convolutional networks almost always incorporate some form of spatial pooling, and very often it is α × α max-pooling with α = 2. Max-pooling act on the hidden layers of the network, reducing their size by an integer multiplicative factor α. The amazing by product of discarding 75% of your data is that you build into the network a degree of invariance with respect to translations and elastic di...
متن کاملVisual Word Selection without Re-Coding and Re-Pooling
The Bag-of-Words (BoW) representation is widely used in computer vision. The size of the codebook impacts the time and space complexity of the applications that use BoW. Thus, given a training set for a particular computer vision task, a key problem is pruning a large codebook to select only a subset of visual words. Evaluating possible selections of words to be included in the pruned codebook ...
متن کاملAdGAP: Advanced Global Average Pooling
Global average pooling (GAP) has been used previously to generate class activation maps. The motivation behind AdGAP comes from the fact that the convolutional filters possess position information of the essential features and hence, combination of the feature maps could help us locate the class instances in an image. Our novel architecture generates promising results and unlike previous method...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics
سال: 2014
ISSN: 1110-757X,1687-0042
DOI: 10.1155/2014/828907